
TIME SERIES MODELS WITH GENERALIZED GEOMETRIC

LINNIK MARGINALS

Mariamma Antony

Department of Statistics, Little Flower College, Guruvayoor, Kerala-680103, India

ARTICLE HISTORY

Compiled August 28, 2023

Received 16 May 2023; Accepted 23 July 2023

ABSTRACT
Time series models with non-Gaussian marginal distributions have received much at-
tention in recent years. This include autoregressive models with exponential, Pareto,
Weibull, logistic, mixed Gamma, Laplace, Cauchy and Stable marginal distributions.
In this paper, autoregressive models with Type I and Type II generalized Geometric
Linnik marginal are developed.
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1. Introduction

The analysis of time series in the classical set up is based on the assumption that the
observed series is a realization from a Gaussian sequence. However, there are many
situations where the naturally occurring data show a tendency to follow heavy tailed
distributions that cannot be modeled by a Gaussian distribution. The usual technique
of transferring data to use a Gaussian model also fails in certain situations (see, [4]).
Hence a number of non-Gaussian autoregressive models have been introduced by
various researchers (see, [2] and [3]).

The study of non-Gaussian autoregressive models began with the pioneering work of
[1]. They have considered an AR(1) model with exponential(µ) marginal distribution.
The model is given by x0 = ε1 and for n = 1, 2...

Xn = ρXn−1 +

{
0 w · p. p
εn w · p. (1− p)

(1)

and w.p. stands for with probability, 0 ≤ ρ ≤ 1 and {εn} is a sequence of independent
and identically distributed exponential random variables.
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[5] developed Pakes generalized Linnik first order autoregressive process and studied
its properties. [6] studied some properties of type I and type II Generalized Geometric
Linnik Distribution. In this paper we develop autoregressive models with Geometric
Linnik marginal distribution.

2. TIME SERIES MODELS WITH GEOMETRIC LINNIK
MARGINALS

Definition 2.1. A random variable X on R is said to have geometric Linnik distri-

bution and write X
d
=GL(α, λ) if its characteristic function ϕ(t) is

ϕ(t) =
1

1 + ln(1 + λ|t|α)
, t ∈ R, 0 < α ≤ 2, λ > 0 (2)

Definition 2.2. A random variableX onR is said to have type I generalized geometric

Linnik distribution and write X
d
=GeGL1(α, λ, p) if it has the characteristic function

ϕ(t) =
1

1 + p ln(1 + λ|t|α)
, p > 0, λ > 0, 0 < α ≤ 2 (3)

Definition 2.3. A random variable X on R is said to have type II Generalized Ge-

ometric Linnik distribution and write X
d
=GeGL2(α, λ, τ) if it has the characteristic

function

ϕ(t) =

[
1

1 + ln(1 + λ|t|α)

]τ
, t ∈ R, λ, τ > 0, 0 < α ≤ 2. (4)

Note that when τ = 1, type II Generalized Geometric Linnik distribution reduces
to geometric Linnik distribution.

Theorem 2.4. Let {Xn, n ≥ 1} be defined as

Xn =

{
εn w · p. p
Xn−1 + εn w · p. (1− p)

(5)

where {εn} is a sequence of independent and identically distributed random variables.
A necessary and sufficient condition that {Xn} is strictly stationary Markov process
with GL(α, λ) marginals is that {εn} are distributed as GeGL1(α, λ, p).

Proof. Taking characteristic functions on both sides of (5), we get

ϕXn
(t) = pϕεn(t) + (1− p)ϕXn−1

(t)ϕεn(t)

If {Xn} is stationary, then ϕX(t) = pϕε(t) + (1− p)ϕX(t)ϕε(t).
That is,

ϕε(t) =
ϕX(t)

p+ (1− p)ϕX(t)
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If ϕX(t) = 1
1+ln(1+λ|t|α) , then ϕε(t) =

1
1+p ln(1+λ|t|α) .

Conversely, if {εn} are independent and identically distributed as GeGL1(α, λ, p),
then

ϕX1
(t) = p

1

1 + p ln (1 + λ|t|α)
+ (1− p)

1

1 + ln (1 + λ|t|α)
1

1 + p ln (1 + λ|t|α)

=
1

1 + p ln (1 + λ|t|α)

[
p+ p ln (1 + λ|t|α) + 1− p

1 + ln (1 + λ|t|α)

]
=

1

1 + ln (1 + λ|t|α)

. If Xn−1
d
=GL(α, λ) then we get Xn

d
=GL(α, λ). Hence the process {Xn} is strictly

stationary. This completes the proof.

Consider the kth order autoregressive process

Xn =



εn w · p. p
Xn−1 + εn w · p. p1
Xn−2 + εn w · p. p2
.
.
.
Xn−k + εn w · p. pk

(6)

where p+ p1 + p2 + ...+ pk = 1, 0 < pi < 1, i = 1, 2, ...k and {εn} is a sequence of in-
dependent and identically distributed random variables independent ofXn−1, Xn−2, ....

Taking characteristic functions on both sides of (6), we get

ϕXn
(t) = pϕεn(t) + p1ϕXn−1

(t)ϕεn(t) + p2ϕXn−2
(t)ϕεn(t) + ...+ pkϕXn−k

(t)ϕεn(t).

That is,

ϕεn(t) =
ϕX(t)

p+ (1− p)ϕX(t)
.

Following similar lines in Theorem 2.4., we get the following result.

Theorem 2.5. A necessary and sufficient condition that the model (6) defines AR(k)
process with GL(α, λ) distribution is that {εn} is distributed as GeGL1(α, λ, p) .

The model developed in this paper can be used for modeling stock price returns,
speech waves etc, as an alternative to Generalized Linnik laws and Pakes generalized
Linnik laws.
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